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LETTER TO THE EDITOR

Discrete gradient methods for solving ODEs numerically
while preserving a first integral

G R W Quispet and G S Tirner

School of Mathematics, LaTrobe University, Bundoora, Melbourne 3083, Australia
Received 26 March 1996

Abstract. We show that all direct methods for preserving a first integral during the numerical
integration of an ordinary differential equation fit into the unified framework of discrete gradient
methods. Using this framework we construct several new integral-preserving schemes.

1. Introduction

In the numerical analysis of dynamical systems there has been an increased emphasis in
recent years on qualitative aspects [1, 2]. This has come about for two reasons: first,
the ever increasing power of computers that is making feasible the implementation of
sophisticated algorithms, hitherto computationally too expensive; second, the discovery
that certainqualitative features of ODEs can be presenedactly in numerical integration
schemes (while simultaneously quantitative features are not negtecEdmples of such
qualitative features that can be preserved include Hamiltonian structure [4], the presence of
symmetries [5, 6], conservation of phase-space volume in source-free systems [7, 8], the
presence of attractors and othedimit sets [1], and conservation of first integrals [9-19].

In this letter we shall concentrate on the preservation of a single first infedvidre
precisely, we shall study a system of coupled autonomous first-order ODEs

dx
= 1
5 =/ )
where the vector fieldf : R" — R" is such that there exists a scalar integral.e.
df (x)
o 2

We wish to find a discrete approximation to (1):

x —x

= (p('x"x,’ T) (3)

such that the integral is preserved exactly, i.e.
1(x') =1 (x). (4)

1 Email address: r.quispel@Iatrobe.edu.au

i These two points are exemplified by the recent 100 million year integration of the equations of motion of the
entire solar system, using a symplectic integrator [3].

§ The case of more than one first integral will be treated in [17].
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(In (3) and (4) and below, by a slight abuse of notatiors; x(nt) andx’ = x((n+21)1),
wheret is the time step).

Preserving first integrals is important because of their physical relevance, e.g. in
mechanics and astronomy, and also because they can ensure long-term stabilizing effects.
They also play a significant role in determining which bifurcations occur generically. It is
particularly important that a first integral be preserved if the dimension of the system is
low, if the integration time is very long, or if the integral surface is compact.

To date, direct methods for preserving a first integral have mostly fallen into three
categories.

() Integrators which preserve quadratic integralsCooper [9] showed that the implicit
midpoint rule

x’—x=f<x’—2i—x> 5)

T

preserves quadratic integrals (actually, so do all symplectic Runge—Kutta methods).
(i) Hamiltonian-preserving method€onsider a system of Hamiltonian ODEs,
dx DH (x)
= —w-
dr Dx

(6)

wherew is the standard symplectic structure

‘”:=< —?d Icc)j) 7)

(with Id the n/2-dimensional unit matrix), and the gradient is denoted by

o0H (x)/0x1
DH (x)
Dx

= . . 8
dH (x)/dx,

Some Hamiltonian-preserving methods for (6) are given in [10-14, 19].
(iii) Splitting methods which preserve general integra@uispel and Capel [16] found a
direct method for preserving general integrals. It consisted of four steps:

e Write the ODE in skew-gradient form
dx s DI(x)
dr ) Dx
where S is some skew-symmetric matrix (i.6' = —S5).
e Split the right-hand side of (9) into two-dimensional vector fields, each possessing
the integrall.
e Integrate these two-dimensional vector fields using an essentially two-dimensional
integral-preserving integrator.
e Construct am-dimensional integral-preserving integrator from the two-dimensional
integrators obtained in the previous step.

©)

1 Some indirect methods are also given in [15, 20].
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2. Necessary and sufficient conditions for a dynamical system to possess a first
integral
In [16] we proved the following theorem:

Theorem 1The autonomous ODE

dx

— = 10

ar fx) (10)
has a first integral (x) if and only if (10) can (formally) be written as a skew-gradient
system:

% =S(x)- %(x). (11)
(I
In (11), S is some skew-symmetric matrix
St=—8§ (12)
and the gradient is denoted by
ol (x)/0x1
%(x) = . . (13)
a1 (x)/0x,
The (constructive) proof of theorem 1 is given in [16]. It uses the infinitesimal identity
D1
oy =4 (14)

It turns out that theorem 1 carries over to the discrete case:

Theorem 2 Let the ‘discrete gradientA/Ax be any vector satisfying the crucial discrete
analogue of identity (14) [10, 12, 19]:

Al
x' —x) —(x,x)=1x") — I(x). (15)
Ax
Then the (implicit) mapping

X —X

=g, x', 1) (16)

T

has a first integral (x) if and only if (16) can (formally) be written as a discrete skew-
gradient system

x —x

- Al )
=S, x, 1) —(x,x)). (17)
T Ax

([
In (17), S is some skew-symmetric matrix
St=_38. (18)

The proof is analogous to the proof of theorem 1, and will therefore be omitted. Note,
however, that for a given integral the choice of discrete gradient satisfying (15) is not
unique, and that for a given discrete gradient the mafrig not unique (see below).
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3. Discrete gradient methods as integral-preserving integrators

Theorem 2 implies that the exact flow of an integral-possessing ODE is a discrete skew-
gradient system. Combining theorems 1 and 2 then suggests the following two-step method
for constructing integral-preserving integrators (IPIs):

(i) Write the ODE in the skew-gradient form

de DI (x)
& =S5 (19)

(ii) Integrate (19), using an integral-preserving discrete gradient method

x —x

= S(x, x', t)~%(x,x/). (20)
x

Step (i): Write the ODE in the formxdd: = S - (DI/Dx).

For a given vector fieldf and integrall, there are in general infinitely many choices for
the skew matrixS (see [16]). Here we restrict ourselves to giving a family of particular
solutions. For any arbitrary vector fieldx), a skew matrixS as in theorem 1 is given
by [21]

fi)a;(x) — a;(x) fj(x)

: (21)
> k=@ (x) (31(X)/3xk)>

Sij(x) =

(This is easily shown using - (DI/Dx) = 0.) The choice of the vector field(x) is
governed by our two conflicting desires f6rto be as simple as possible, but preferably
free from singularities.

Example 1 3k, Vx, (31(x)/dx;) # 0. In this case we can choose

a(x) = ¢ (22)
wheree,, is a unit vector in the, direction.
Example 2. The general cashn this case we can chodse

DI
a(x) = DECX)' (23)

Step (ii):  Integral-preserving discrete gradient methods.
Even though, formally, all discrete gradients are equivalent (cf theorem 2), in practice
(depending on the vector field) one may be more convenient than another:

(iia) Choice of discrete gradient.
Each discrete gradient must satisfy the discrete identity (6), and must be consistent:

Al

(Ax)(x, x) = B—:(x) + O(7). (24)

1 A sufficient condition for this to work is that YDx # 0 on the integral surface on which we are integrating.
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A discrete gradient satisfying (15) and (24) was given by Itoh and Abe [10], cf also [12]:

](-xiv X2, X3, X4, -+, xn) - I(xlv X2, X3, X4, -+, xn)
xX]—x1
I(x17 xé7 X3, X4, "+, x}’l) - I(xi7 X2, X3, X4, "+, xl’l)
X5 — X2
<A1> 1(xy, x5, X3, Xa, =+, Xn) — 1(X], X3, X3, Xa, =+, Xn)
— ) (. x) = XL —x . (25)
3
Ax /, 3 ‘
T(xy, x5, X g, %) — T(X3, X5, - -+, %) 4, Xp)
X, — Xn

An equally good discrete gradient is obtained by performing an arbitrary permutatidn
the indices 1..., n:

Al E. —1 ()-1
(A(nx)) (e, %) = (xj)( [1 Enw))I(XL S X) (26)
) =1

P X

where thelth time shift operatoi&, is defined by
E(g(sva):g(v-xzv) (62191}1) (27)

whereg is any function and the dots in (27) denote the otther 1 (primed or unprimed)
variables. This allows us to construct a quite general discrete gradient:

AL Y, eGn)(AL/AG)
(Ax)z(x’ V=TS (28)

where thec(sr) are arbitrary coefficients. Choosing

(7 = 1 if 7 = identity (29)
=10 otherwise

we recover(Al/Ax);. Choosing

3 if 7 = identity
cm)y=11 if 7(1,--.n)=(@n, -, 1) (30)
0 otherwise
we obtain
(Al> (x.x) = (AT/AX)1(x, x") + (AT/Ax)1(x ,X)_ (31)
Ax /4 2
A more symmetric IPI is obtained by choosing
() = i \Zi1 (32)

n!
leading to

Al L1 Al /
(M)4(x,x)—mzw(x,x). (33)

T
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Note that any discrete gradient can be obtained from any other by adding a solution of the
(homogeneous) equations

x'—x)akx,x)=0 a(x,x") =0(). (34)
The solution to (34) is

al(x,x)=blx,x)— (' —x) O = x) - blx, X') (35)
x'—=x)-(x'—x)

whereb is an arbitrary vector of order.
We choose

DI Al
b(x,x") = a(z(x,x/)) — (Ax> (x,x") (36)
1

wherez(x, x") = x + O(r). Substituting in (35) and adding to (25) we obtain

Al , DI , (x"—x)-(DI/Dx)(z) — I(x") + I (x)
= )= —(2) = (x' — . 37
(Ax)s(x *) Dx(z) o= x'—x) - (x'—x) (37)
This very nice solution was discovered by Gonzalez.
(iib) Choice of skew-symmetric matrix.
To be consistent each skew matrix must satisfy
S(x,x',7) = S(x) + O(1). (38)
Two simple choices are therefore
S1(x,x', 1) = S(x) (39)
and
So(x,x', 1) = S<x —;x ) (40)
(ic) Combination of the discrete gradient and the skew matrix.
A simple first-order IPI is
f— Al
oY S(x)() (x, x'). (41)
T Ax )/,
To obtain a second-order IPl we impose the additional requirement of ‘time symmetry’, i.e.
S, x',7) =S, x, —1) (42)
Al , Al
<Ax)(” )= <A>( o “

Equation (42) is satisfied b§,, and (43) is satisfied e.g. lAI/Ax)s, (AI/Ax)4, and, if
z(x,x") = z(x', x), by (AI/Ax)s [19].

The ‘time-symmetry’ of (42) and (43) makes these integrators suitable building blocks
for constructing integrators of arbitrary order using Yoshida’'s method [22].
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4. A numerical example

To illustrate the fact that standard methods [23] do not, in general, preserve first integrals,
we have compared the performance of three numerical integration methods on the ODE
X =x 4 yz +0.1xy? + xy® + 0.1xy°
y=—x2427% - 0.1x%? (44)
I=—z—xy—y2
with initial conditionsx(0) = z(0) = 1, y(0) = 2. Note that the system (44) has the first
integral
xZ y4 ZZ
I=—+=— —. 45
>t (45)

The level surfaces of this integral are all compact. The three fourth-order methods we used
are an explicit linear multi-step method (LM4), an explicit Runge—Kutta method (RK4),
and one of our new implicit IPIs (QT4). The time stepsave been adjusted such that the
amount of numerical work performed by the three methods is identical.

e LM4: This is the fourth-order Adams—Bashforth method.
RK4: The standard fourth-order Runge—Kutta method defined by the Butcher tableau:

1
2
o !
2
0 0 1 (46)
12 2 1
6 6 6 6
e QT4: Note that (44) can be written in skew-gradient form (11), with
0 x+0.1xy? vy
S=| —x—01xy? 0 z ). (47)
-y -z 0

QT4 was obtained by first constructing a second-order IPI, using (17) with (31) and (43),
and then applying Yoshida’s method to obtain a fourth-order IPI [22].

Numerical results are given in figure 1.

5. Reduction of the discrete gradient method to previous methods

() Quadratic integrals: reduction to the implicit midpoint rul&rom the arguments given

above it follows that there formally exists a mat§xsuch that
DI (x)
F&x)=S8k)- Dx (48)
X

Now use an IPI withS, and e.g.(A1/Ax)4 or (AI/Ax)s (with z = (x +x')/2). It can
be shown that iff is quadratic, then

Al W (AT DI (x+x
(M)4(x,x)— (Ax>5(x,x)—Dx< 5 ) (49)

and using (48) we see this reduces to the implicit midpoint rule (5).
By the same token, any IPI with (40) preserves all quadratic Casimirs.
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(i) Hamiltonian systems: reduction to the Itoh—Abe and Gonzalez methemtsstandard
Hamiltonian systems we can take= H andS = S = w. The Itoh—Abe method is then
recovered choosing the discrete gradientd/Ax);. Gonzalez's method is obtained
choosing the discrete gradiegh//Ax)s with z = (x + x')/2.

(iii) Reduction to integral-preserving splitting methodhe ODE (11) is equivalent to the

vector field
V= Z U,"j (50)

i<j

where

al 0 al 0
Vi, j = Si.j ( — ) (51)
B.Xj axi 8x,~ B.Xj

and each vector field; ; preserves the integrdl. Using the splitting (50) we obtain
the method of Quispel and Capel [16]. Using various other partitions of theysgt
there are many ways in which tledimensional vector field can be split into lower-
dimensional vector fields that each preserve

6. Concluding remark

Associated with the continuous system (11) there is a bracket formulation

dh(x)

={h, 1 52
o {h, I}c (52)
LM4
7.5
T4

7.0 <
1

6.5 RK4

6.0 . _ ,

0 4000 8000 12000

t

Figure 1. This figure illustrates that conventional integration methods (RK4 and LM4) do not

preserve first integrals. It shows the numerical value of the intefgrals a function of time

t = nt, for the three-dimensional test system (44). It compares the standard fourth-order Runge—

Kutta method (RK4;r = 0.031), a fourth-order linear multistep method (LM# ;= 0.040) and
a fourth-order discrete gradient method (QF4+ 0.443). (The time steps have been adjusted
so that the amount of numerical work performed by the three methods is equivalent.)
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where the continuous bracket is defined by

Dh D
hglo= — -85 %

R 53
Dx Dx (53)

If {h, I}c =0, thenh is a first integral.

Associated with the discrete system (17) there is also a bracket formulation

hG) —hx) —M (54)

where the discrete bracket is given by

A ~ A
{h,glp="—-.5.28

. 55
Ax Ax (55)

If {h,I}p =0, thenh is a first integral.

We are grateful to Robert McLachlan for pointing out [19]. GRWQ also thanks Clint Scovel
and Robert McLachlan for their hospitality during visits to Los Alamos National Laboratory
and Massey University. GST is grateful to the Australian Research Council for partial
support during the time this paper was written.
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