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LETTER TO THE EDITOR

Discrete gradient methods for solving ODEs numerically
while preserving a first integral

G R W Quispel† and G S Turner
School of Mathematics, LaTrobe University, Bundoora, Melbourne 3083, Australia

Received 26 March 1996

Abstract. We show that all direct methods for preserving a first integral during the numerical
integration of an ordinary differential equation fit into the unified framework of discrete gradient
methods. Using this framework we construct several new integral-preserving schemes.

1. Introduction

In the numerical analysis of dynamical systems there has been an increased emphasis in
recent years on qualitative aspects [1, 2]. This has come about for two reasons: first,
the ever increasing power of computers that is making feasible the implementation of
sophisticated algorithms, hitherto computationally too expensive; second, the discovery
that certainqualitative features of ODEs can be preservedexactly in numerical integration
schemes (while simultaneously quantitative features are not neglected)‡. Examples of such
qualitative features that can be preserved include Hamiltonian structure [4], the presence of
symmetries [5, 6], conservation of phase-space volume in source-free systems [7, 8], the
presence of attractors and otherω-limit sets [1], and conservation of first integrals [9–19].

In this letter we shall concentrate on the preservation of a single first integral§. More
precisely, we shall study a system of coupled autonomous first-order ODEs

dx

dt
= f (x) (1)

where the vector fieldf : Rn → Rn is such that there exists a scalar integralI , i.e.

dI (x)

dt
= 0. (2)

We wish to find a discrete approximation to (1):

x ′ − x

τ
= ϕ(x, x ′, τ ) (3)

such that the integralI is preserved exactly, i.e.

I (x ′) = I (x). (4)

† Email address: r.quispel@latrobe.edu.au
‡ These two points are exemplified by the recent 100 million year integration of the equations of motion of the
entire solar system, using a symplectic integrator [3].
§ The case of more than one first integral will be treated in [17].
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(In (3) and (4) and below, by a slight abuse of notation,x = x(nτ) andx ′ = x((n+1)τ ),
whereτ is the time step).

Preserving first integrals is important because of their physical relevance, e.g. in
mechanics and astronomy, and also because they can ensure long-term stabilizing effects.
They also play a significant role in determining which bifurcations occur generically. It is
particularly important that a first integral be preserved if the dimension of the system is
low, if the integration time is very long, or if the integral surface is compact.

To date, direct methods for preserving a first integral have mostly fallen into three
categories†:

(i) Integrators which preserve quadratic integrals.Cooper [9] showed that the implicit
midpoint rule

x ′ − x

τ
= f

(
x ′ + x

2

)
(5)

preserves quadratic integrals (actually, so do all symplectic Runge–Kutta methods).
(ii) Hamiltonian-preserving methods.Consider a system of Hamiltonian ODEs,

dx

dt
= ω · DH(x)

Dx
(6)

whereω is the standard symplectic structure

ω :=
(

0 Id
−Id 0

)
(7)

(with Id the n/2-dimensional unit matrix), and the gradient is denoted by

DH(x)

Dx
:=


∂H(x)/∂x1

·
·
·

∂H(x)/∂xn

 . (8)

Some Hamiltonian-preserving methods for (6) are given in [10–14, 19].
(iii) Splitting methods which preserve general integrals.Quispel and Capel [16] found a

direct method for preserving general integrals. It consisted of four steps:

• Write the ODE in skew-gradient form
dx

dt
= S(x) · DI (x)

Dx
(9)

whereS is some skew-symmetric matrix (i.e.S t = −S).
• Split the right-hand side of (9) into two-dimensional vector fields, each possessing

the integralI .
• Integrate these two-dimensional vector fields using an essentially two-dimensional

integral-preserving integrator.
• Construct ann-dimensional integral-preserving integrator from the two-dimensional

integrators obtained in the previous step.

† Some indirect methods are also given in [15, 20].
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2. Necessary and sufficient conditions for a dynamical system to possess a first
integral

In [16] we proved the following theorem:

Theorem 1.The autonomous ODE
dx

dt
= f (x) (10)

has a first integralI (x) if and only if (10) can (formally) be written as a skew-gradient
system:

dx

dt
= S(x) · DI

Dx
(x). (11)

�
In (11), S is some skew-symmetric matrix

S t = −S (12)

and the gradient is denoted by

DI

Dx
(x) :=


∂I (x)/∂x1

·
·
·

∂I (x)/∂xn

 . (13)

The (constructive) proof of theorem 1 is given in [16]. It uses the infinitesimal identity

dx · DI

Dx
= dI. (14)

It turns out that theorem 1 carries over to the discrete case:

Theorem 2.Let the ‘discrete gradient’1I/1x be any vector satisfying the crucial discrete
analogue of identity (14) [10, 12, 19]:

(x ′ − x) · 1I

1x
(x, x ′) = I (x ′) − I (x). (15)

Then the (implicit) mapping

x ′ − x

τ
= ϕ(x, x ′, τ ) (16)

has a first integralI (x) if and only if (16) can (formally) be written as a discrete skew-
gradient system

x ′ − x

τ
= S̃(x, x ′, τ ) · 1I

1x
(x, x ′). (17)

�
In (17), S̃ is some skew-symmetric matrix

S̃ t = −S̃. (18)

The proof is analogous to the proof of theorem 1, and will therefore be omitted. Note,
however, that for a given integral the choice of discrete gradient satisfying (15) is not
unique, and that for a given discrete gradient the matrixS̃ is not unique (see below).
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3. Discrete gradient methods as integral-preserving integrators

Theorem 2 implies that the exact flow of an integral-possessing ODE is a discrete skew-
gradient system. Combining theorems 1 and 2 then suggests the following two-step method
for constructing integral-preserving integrators (IPIs):

(i) Write the ODE in the skew-gradient form

dx

dt
= S(x) · DI (x)

Dx
. (19)

(ii) Integrate (19), using an integral-preserving discrete gradient method

x ′ − x

τ
= S̃(x, x ′, τ ) · 1I

1x
(x, x ′). (20)

Step (i): Write the ODE in the form dx/dt = S · (DI/Dx).
For a given vector fieldf and integralI , there are in general infinitely many choices for
the skew matrixS (see [16]). Here we restrict ourselves to giving a family of particular
solutions. For any arbitrary vector fielda(x), a skew matrixS as in theorem 1 is given
by [21]

Si,j (x) = fi(x)aj (x) − ai(x)fj (x)∑n
k=1(ak(x)

(
∂I (x)/∂xk)

) . (21)

(This is easily shown usingf · (DI/Dx) = 0.) The choice of the vector fielda(x) is
governed by our two conflicting desires forS to be as simple as possible, but preferably
free from singularities.

Example 1. ∃k, ∀x, (∂I (x)/∂xk) 6= 0. In this case we can choose

a(x) = êk (22)

whereêk is a unit vector in thexk direction.

Example 2. The general case. In this case we can choose†

a(x) = DI (x)

Dx
. (23)

Step (ii): Integral-preserving discrete gradient methods.
Even though, formally, all discrete gradients are equivalent (cf theorem 2), in practice
(depending on the vector field) one may be more convenient than another:

(iia) Choice of discrete gradient.
Each discrete gradient must satisfy the discrete identity (6), and must be consistent:(

1I

1x

)
(x, x ′) = DI

Dx
(x) + O(τ ). (24)

† A sufficient condition for this to work is that DI/Dx 6= 0 on the integral surface on which we are integrating.
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A discrete gradient satisfying (15) and (24) was given by Itoh and Abe [10], cf also [12]:

(
1I

1x

)
1

(x, x ′) :=



I (x ′
1, x2, x3, x4, · · · , xn) − I (x1, x2, x3, x4, · · · , xn)

x ′
1 − x1

I (x ′
1, x

′
2, x3, x4, · · · , xn) − I (x ′

1, x2, x3, x4, · · · , xn)

x ′
2 − x2

I (x ′
1, x

′
2, x

′
3, x4, · · · , xn) − I (x ′

1, x
′
2, x3, x4, · · · , xn)

x ′
3 − x3

·
·
·

I (x ′
1, x

′
2, · · · x ′

n−1, x
′
n) − I (x ′

1, x
′
2, · · · , x ′

n−1, xn)

x ′
n − xn



. (25)

An equally good discrete gradient is obtained by performing an arbitrary permutationπ of
the indices 1, . . . , n:(

1I

1(πx)

)
(j)

(x, x ′) := (Ej − 1)

x ′
j − xj

(π−1(j)−1∏
`=1

Eπ(`)

)
I (x1, · · · , xn) (26)

where thè th time shift operatorE` is defined by

E`g(· · · , x`, · · ·) := g(· · · , x ′
`, · · ·) (` = 1, . . . , n) (27)

whereg is any function and the dots in (27) denote the othern − 1 (primed or unprimed)
variables. This allows us to construct a quite general discrete gradient:(

1I

1x

)
2

(x, x ′) :=
∑

π c(π)(1I/1(πx))∑
π c(π)

(28)

where thec(π) are arbitrary coefficients. Choosing

c(π) =
{

1 if π = identity

0 otherwise
(29)

we recover(1I/1x)1. Choosing

c(π) =


1
2 if π = identity
1
2 if π(1, · · · , n) = (n, · · · , 1)

0 otherwise

(30)

we obtain (
1I

1x

)
3

(x, x ′) = (1I/1x)1(x, x ′) + (1I/1x)1(x
′, x)

2
. (31)

A more symmetric IPI is obtained by choosing

c(π) = 1

n!
∀π (32)

leading to (
1I

1x

)
4

(x, x ′) = 1

n!

∑
π

1I

1(πx)
(x, x ′). (33)
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Note that any discrete gradient can be obtained from any other by adding a solution of the
(homogeneous) equations

(x ′ − x)a(x, x ′) = 0 a(x, x ′) = O(τ ). (34)

The solution to (34) is

a(x, x ′) = b(x, x ′) − (x ′ − x)
(x ′ − x) · b(x, x ′)
(x ′ − x) · (x ′ − x)

(35)

whereb is an arbitrary vector of orderτ .
We choose

b(x, x ′) = DI

Dx
(z(x, x ′)) −

(
1I

1x

)
1

(x, x ′) (36)

wherez(x, x ′) = x + O(τ ). Substituting in (35) and adding to (25) we obtain(
1I

1x

)
5

(x, x ′) = DI

Dx
(z) − (x ′ − x)

(x ′ − x) · (DI/Dx)(z) − I (x ′) + I (x)

(x ′ − x) · (x ′ − x)
. (37)

This very nice solution was discovered by Gonzalez.

(iib) Choice of skew-symmetric matrix.
To be consistent each skew matrix must satisfy

S̃(x, x ′, τ ) = S(x) + O(τ ). (38)

Two simple choices are therefore

S̃1(x, x ′, τ ) = S(x) (39)

and

S̃2(x, x ′, τ ) = S

(
x + x ′

2

)
. (40)

(iic) Combination of the discrete gradient and the skew matrix.
A simple first-order IPI is

x ′ − x

τ
= S(x)

(
1I

1x

)
1

(x, x ′). (41)

To obtain a second-order IPI we impose the additional requirement of ‘time symmetry’, i.e.

S̃(x, x ′, τ ) = S̃(x ′, x,−τ) (42)(
1I

1x

)
(x, x ′) =

(
1I

1x

)
(x ′, x). (43)

Equation (42) is satisfied bỹS2, and (43) is satisfied e.g. by(1I/1x)3, (1I/1x)4, and, if
z(x, x ′) = z(x ′, x), by (1I/1x)5 [19].

The ‘time-symmetry’ of (42) and (43) makes these integrators suitable building blocks
for constructing integrators of arbitrary order using Yoshida’s method [22].
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4. A numerical example

To illustrate the fact that standard methods [23] do not, in general, preserve first integrals,
we have compared the performance of three numerical integration methods on the ODE

ẋ = x + yz + 0.1xy2 + xy3 + 0.1xy5

ẏ = −x2 + z2 − 0.1x2y2

ż = −z − xy − y3z

(44)

with initial conditionsx(0) = z(0) = 1, y(0) = 2. Note that the system (44) has the first
integral

I = x2

2
+ y4

4
+ y + z2

2
. (45)

The level surfaces of this integral are all compact. The three fourth-order methods we used
are an explicit linear multi-step method (LM4), an explicit Runge–Kutta method (RK4),
and one of our new implicit IPIs (QT4). The time stepsτ have been adjusted such that the
amount of numerical work performed by the three methods is identical.

• LM4: This is the fourth-order Adams–Bashforth method.
• RK4: The standard fourth-order Runge–Kutta method defined by the Butcher tableau:

1
2
0 1

2
0 0 1
1
6

2
6

2
6

1
6

. (46)

• QT4: Note that (44) can be written in skew-gradient form (11), with

S =
 0 x + 0.1xy2 y

−x − 0.1xy2 0 z

−y −z 0

 . (47)

QT4 was obtained by first constructing a second-order IPI, using (17) with (31) and (43),
and then applying Yoshida’s method to obtain a fourth-order IPI [22].

Numerical results are given in figure 1.

5. Reduction of the discrete gradient method to previous methods

(i) Quadratic integrals: reduction to the implicit midpoint rule.From the arguments given
above it follows that there formally exists a matrixS such that

f (x) = S(x) · DI (x)

Dx
. (48)

Now use an IPI withS̃2 and e.g.(1I/1x)4 or (1I/1x)5 (with z = (x + x ′)/2). It can
be shown that ifI is quadratic, then(

1I

1x

)
4

(x, x ′) =
(

1I

1x

)
5

(x, x ′) = DI

Dx

(
x + x ′

2

)
(49)

and using (48) we see this reduces to the implicit midpoint rule (5).
By the same token, any IPI with (40) preserves all quadratic Casimirs.
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(ii) Hamiltonian systems: reduction to the Itoh–Abe and Gonzalez methods.For standard
Hamiltonian systems we can takeI = H andS = S̃ = ω. The Itoh–Abe method is then
recovered choosing the discrete gradient(1H/1x)1. Gonzalez’s method is obtained
choosing the discrete gradient(1I/1x)5 with z = (x + x ′)/2.

(iii) Reduction to integral-preserving splitting methods.The ODE (11) is equivalent to the
vector field

v =
∑
i<j

vi,j (50)

where

vi,j := Si,j

(
∂I

∂xj

∂

∂xi

− ∂I

∂xi

∂

∂xj

)
(51)

and each vector fieldvi,j preserves the integralI . Using the splitting (50) we obtain
the method of Quispel and Capel [16]. Using various other partitions of the set{vi,j },
there are many ways in which then-dimensional vector fieldv can be split into lower-
dimensional vector fields that each preserveI .

6. Concluding remark

Associated with the continuous system (11) there is a bracket formulation

dh(x)

dt
= {h, I }C (52)

Figure 1. This figure illustrates that conventional integration methods (RK4 and LM4) do not
preserve first integrals. It shows the numerical value of the integralI , as a function of time
t = nτ , for the three-dimensional test system (44). It compares the standard fourth-order Runge–
Kutta method (RK4;τ = 0.031), a fourth-order linear multistep method (LM4;τ = 0.040) and
a fourth-order discrete gradient method (QT4;τ = 0.443). (The time stepsτ have been adjusted
so that the amount of numerical work performed by the three methods is equivalent.)
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where the continuous bracket is defined by

{h, g}C := Dh

Dx
· S · Dg

Dx
. (53)

If {h, I }C ≡ 0, thenh is a first integral.
Associated with the discrete system (17) there is also a bracket formulation

h(x ′) − h(x)

τ
= {h, I }D (54)

where the discrete bracket is given by

{h, g}D := 1h

1x
· S̃ · 1g

1x
. (55)

If {h, I }D ≡ 0, thenh is a first integral.

We are grateful to Robert McLachlan for pointing out [19]. GRWQ also thanks Clint Scovel
and Robert McLachlan for their hospitality during visits to Los Alamos National Laboratory
and Massey University. GST is grateful to the Australian Research Council for partial
support during the time this paper was written.
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